
ar
X

iv
:1

01
1.

13
63

v1
  [

m
at

h.
N

A
] 

 5
 N

ov
 2

01
0

A subspace shift technique for

solving close-to-critical nonsymmetric

algebraic Riccati equations

Bruno Iannazzo1 and Federico Poloni2

November 8, 2010

1: Dipartimento di Matematica e Informatica. Via Vanvitelli 1, 06123 Perugia, Italy.
bruno.iannazzo@dmi.unipg.it

2: Scuola Normale Superiore. Piazza dei Cavalieri 7, 56126 Pisa, Italy. f.poloni@sns.it

The worst situation in computing the minimal nonnegative solution X∗

of a nonsymmetric algebraic Riccati equation R(X) = 0 associated with an
M-matrix occurs when the derivative of R at X∗ is near to a singular matrix.
When the derivative of R at X∗ is singular, the problem is ill-conditioned
and the convergence of the algorithms based on matrix iterations is slow;
however, there exist some techniques to remove the singularity and restore
well-conditioning and fast convergence. This phenomenon is partially shown
also in the close-to-critical case, but the techniques used for the null recurrent
case cannot be applied to this setting.

We present a new method to accelerate the convergence and amend the
conditioning in close-to-critical cases. The numerical experiments confirm
the efficiency of the new method.

Keywords: nonsymmetric algebraic Riccati equation, fluid queue, doubling algorithm,
shift technique

1 Introduction

We consider the nonsymmetric algebraic Riccati equation (or NARE)

0 = R(X) := XCX −AX −XD +B, (1)

where X,B ∈ C
m×n, A ∈ C

m×m, C ∈ C
n×m, D ∈ C

n×n.
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In certain applications in queueing models [22] and in the numerical solution of trans-
port equations [19], the coefficients of (1) are such that

M =

[
D −C
−B A

]

is an M-matrix, either nonsingular or singular irreducible. In this case, we give Equation
(1) the acronym M-NARE. We recall that M ∈ C

n×n is an M-matrix if it can be written
in the form M = sIn−N , where In is the identity matrix of size n (denoted also by I if
there is no ambiguity), N is a matrix whose elements are nonnegative, for which we use
the notation N > 0, and s > ρ(N), where ρ(·) is the spectral radius of a square matrix.
The M-matrix M is singular if s = ρ(N) and nonsingular if s > ρ(N). It can be proved
that the eigenvalues of an M-matrix have nonnegative real part [2].

The solutions of the NARE (1) can be put in correspondence with certain n-dimensional
invariant subspaces of the matrix

H =

[
D −C
B −A

]
. (2)

More precisely, a matrix X ∈ C
m×n is a solution of (1) if and only if the columns of[

In
X

]
span an invariant subspace of H, in particular it holds that

H
[
In
X

]
=

[
In
X

]
(D − CX), (3)

and the eigenvalues of D − CX are a subset of the eigenvalues of H.
We say that the NARE (1) is associated with the matrix H of (2). Observe that any

2× 2 block matrix with square diagonal blocks yields a NARE associated with it.

In the case of an M-NARE, where H = JM for J =

[
In 0
0 −Im

]
, it can be proved

(see [4] and the references therein) that the eigenvalues of H can be ordered by non
increasing real part such that

ℜλ1 > · · · > ℜλn−1 > λn > 0 > λn+1 > · · · > ℜλm+n,

that is, n eigenvalues belong to the closed right half complex plane and the others to the
closed left half plane, and the central eigenvalues, λn and λn+1, are real and separated
from the other eigenvalues. If λn = 0 = λn+1, then there exists only one linearly
independent eigenvector for the zero eigenvalue, that is, there is a Jordan block of size
2 relative to the zero eigenvalue in the Jordan canonical form of H.

For these reasons, the matrixH associated with an M-NARE has a unique n-dimensional
invariant subspace corresponding to the n rightmost eigenvalues, namely λ1, . . . , λn,
which we call the n-dimensional semi-unstable invariant subspace of H (the term comes
from the theory of the symmetric algebraic Riccati equations in dynamical systems [20]).
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In the applications, the required solution of the M-NARE is the one for which the

columns of

[
In
X

]
span the semi-unstable n-dimensional invariant subspace of H, or,

equivalently, such that the eigenvalues of D−CX are the n rightmost eigenvalues of H.
This solution has been proved to exist and it turns out to be the minimal element-wise
nonnegative solution of (1) (see [11]).

When M is singular irreducible, at least one among λn and λn+1 is zero and M =
ρ(N)I −N , for some irreducible nonnegative matrix N . By the Perron–Frobenius the-
orem [2] and the irreducibility assumption, kerM and kerMT are one dimensional,

spanned by two vectors with positive entries which we call v =

[
v1
v2

]
and u =

[
u1
u2

]
,

respectively. We haveMv = Hv = 0 and uTM = (uTJ )H = 0. We define the drift of
the Riccati equation as

µ = −uTJ v = uT2 v2 − uT1 v1. (4)

It can be proved that [4, 11]

• µ < 0 if and only if λn = 0 > λn+1 (positive recurrent case);

• µ = 0 if and only if λn = 0 = λn+1 (null recurrent case);

• µ > 0 if and only if λn > 0 = λn+1 (transient case).

The terms drift, transient, positive and null recurrent come from the fluid queue model
where the M-NARE first appeared [22].

Equation (1) is usually solved either by some matrix iteration, e.g., the Cyclic Re-
duction (CR) [3] or the Structure-preserving Doubling Algorithm (SDA) [8, 14], whose
limits yield the required solution or using the ordered Schur form of H [12].

Both the conditioning of the equation and the convergence speed of the iterations
are strictly related to the relative gap between the central eigenvalues of H, i.e., (λn −
λn+1)/‖H‖F , where ‖ · ‖F denotes the Frobenius norm. If λn = λn+1, then the minimal
nonnegative solution of equation (1) is ill-conditioned [13] and the convergence of iter-
ations such as CR and SDA, which is quadratic in the generic case, turns to linear [7].
We speak of critical case, since in these cases the required solution X is critical, namely
R′(X) is singular, where R′(X) is the Fréchet derivative of the operator R(X).

In such cases, the shift technique of [14, 18] has proved to be useful. It consists in
making a special rank-one correction of H, obtaining a new Riccati equation with the
same minimal solution. The new equation has better conditioning and the convergence
of iterations is quadratic again.

However, ill-conditioning and slow convergence appear also in the close-to-null recur-
rent case, or, in terms of the central eigenvalues, when λn ≈ 0, λn+1 ≈ 0. This is the
worst-case scenario since the numerical solution of the matrix equations is problematic
and the use of the shift technique is not recommended since it relies on the computation
of an ill-conditioned eigenvector and the sign of the drift µ. When M is a singular
irreducible M-matrix, it is also hard to determine the sign of the drift µ, and thus to
classify the queue in the fluid queue models.
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These difficulties are the main motivation for this work in which we present a new
technique to handle the close-to-null recurrent case. The technique relies on the fact
that, for the M-NARE, there exists a unique 2-dimensional invariant subspace of H
associated with the eigenvalues λn and λn+1, which we call the 2-dimensional central
invariant subspace of H. It is spanned by the two eigenvectors corresponding to λn and
λn+1, when λn 6= λn+1 or by the Jordan chain associated to 0 in the critical case.

If the central eigenvalues λn and λn+1 of H are close to each other but well sepa-
rated from the other eigenvalues of H, then, while the eigenvectors corresponding to λn

and λn+1 are ill-conditioned, the 2-dimensional central invariant subspace shows good
conditioning.

The proposed technique is based on a rank-two modification of H made by means
of the central invariant subspace. We move the central eigenvalues together and we
obtain a new NARE, with the same solution as the original or a solution which is a
rank-one modification of the solution of the original equation. The new equation has
better conditioning and, in certain cases, the convergence of iterations is much faster.

The paper is organized as follows. In Section 2, we review some basic results on
NAREs, especially regarding their relation to invariant subspaces. In Section 3, we
show how the conditioning of the equation is related to the gap between the central
eigenvalues of a NARE. In Sections 4 and 5, we present respectively the Structured
Doubling Algorithm and the shift technique, two important tools for the numerical
solution of NAREs. In Section 6, we introduce the subspace shift technique, and show
how it affects the semi-stable and semi-stable solutions of the Riccati equation. In
Section 7, we arrive to an algorithm, and discuss its implementation details and variants.
Finally, Section 8 contains our numerical experiments on the subspace shift algorithm.

In the following, σ(M) stands for the set of the eigenvalues of M ∈ C
n×n, and ‖·‖F

denotes the Frobenius norm.

2 Invariant subspaces, solvability, and the dual equation

Let R(X) = 0 be the M-NARE associated with H of (2), and let λ1, . . . , λm+n be the
eigenvalues of H, counted with their algebraic multiplicity and ordered by nonincreasing
real part. In the following, we need to deal only with the following cases. Notice that
in all of them there is a splitting of the eigenvalues with respect to the imaginary axis,
i.e., ℜλn > 0 > ℜλn+1.

nonsingular case ℜλn > 0 > ℜλn+1;

transient case ℜλn > 0 = ℜλn+1;

positive recurrent case ℜλn = 0 > ℜλn+1;

null recurrent case ℜλn−1 > ℜλn = 0 = ℜλn+1 > ℜλn+2, and λn and λn+1 are the
eigenvalues corresponding to a 2× 2 Jordan block with eigenvalue 0.
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In all the cases above, the invariant subspaces Vsu and Vss associated with the eigenvalues
{λ1, . . . , λn} and {λn+1, . . . , λn+m}, respectively, are well-defined. We call them semi-
unstable and semi-stable subspace, respectively.

Theorem 1 ([11, 20]). Let

Vsu =

[
V

(1)
su

V
(2)
su

]
, V (1)

su
∈Rn×n, V (2)

su
∈Rm×n

be a matrix such that Vsu = spanVsu. The NARE (1) associated with the matrix H of

(2) admits a solution X∗ such that σ(D − CX∗) = {λ1, . . . , λn} if and only if V
(1)
su is

nonsingular, and in this case X∗ = V
(2)
su

(
V

(1)
su

)−1
.

We call X∗ the semi-unstable solution.
The NARE

0 =D(Y ) := Y BY − Y A−DY + C, Y ∈Rn×m, (5)

is called the dual equation to (1). There is a counterpart of Theorem 1 for the dual
equation.

Theorem 2 ([11]). Let

Vss =

[
V

(1)
ss

V
(2)
ss

]
, V (1)

ss
∈Rn×m, V (2)

ss
∈Rm×m

be a matrix such that Vss = spanVss. The dual equation admits a solution Y∗ such that

σ(BY∗ − A) = {λn+1, . . . , λn+m} if and only if V
(2)
ss is nonsingular, and in this case

Y∗ = V
(1)
ss

(
V

(2)
ss

)−1
.

Notice that
[
In
X∗

]
,

[
Y∗

Im

]
, (6)

span the semi-unstable and semi-stable subspaces, respectively. The two subspaces have
zero intersection, unless λn = λn+1, when the unique (up to a scalar multiple) indepen-
dent eigenvector of H corresponding to λn belongs to both of them.

In the case of M-NAREs, one can prove the existence ofX∗ and Y∗ by a direct argument
[15].

3 Gap and conditioning of the Riccati equation

We recall from [10, 23] the classical definition of separation between the two square
matrices M and N

sep(M,N) := min
X 6=0

‖MX −XN‖F
‖X‖F

,
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and the bound
sep(M,N) 6 min

µ∈σ(M),ν∈σ(N)
|µ− ν| .

Let

U =

[
U11 U12

U21 U22

]
, U11 ∈Rn×n, U22 ∈Rm×m

be an orthogonal matrix such that

UTHU =

[
G11 G12

0 G22

]
, G11 ∈ C

n×n,

where H is as in (2) and σ(G11) = {λ1, λ2, . . . , λn}, then the columns of

[
U11

U21

]
span the

semi-unstable space, and thus by Theorem 1 the minimal solution of (1) is X∗ = U21U
−1
11 .

Let
H̃ = H +∆H

be a perturbation of H. For ∆H sufficiently small JH̃ is an M-matrix and the NARE
associated with H̃ is an M-NARE whose minimal nonnegative solution is denoted by
X̃∗. Then, the following result holds.

Theorem 3 ([16]). Let UT∆HU be conformably partitioned as

UT∆HU =

[
∆G11 ∆G12

∆G21 ∆G22

]
,

and
δ = sep(G11, G22)− (‖∆G11‖F + ‖∆G22‖F ).

If sep(G11, G22) > 0 and the perturbation ∆H is sufficiently small, then

∥∥∥X̃∗ −X∗
∥∥∥
F
6

2
√
2
∥∥U−1

11

∥∥
2
‖∆H‖F

δ − 2
√
2
∥∥U−1

11

∥∥
2
‖∆H‖F

√
1 + ‖X∗‖22.

This result shows that we may regard to the quantity
√

1 + ‖X∗‖22
‖X∗‖F

2
√
2
∥∥U−1

11

∥∥
2
‖H‖F

sep(G11, G22)
(7)

as a (Frobenius-norm) condition number forX∗. Since σ(G22) = {λn+1, λn+2, . . . , λm+n},
this condition number is necessarily large if the relative gap (λn−λn+1)/‖H‖F is small.
Therefore, a close-to-critical NARE is always ill-conditioned.

4 The doubling algorithm

In this section we review the Structure-preserving Doubling Algorithm (or SDA) and its
application for computing the minimal nonnegative solution X of the M-NARE (1).
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4.1 Matrix pencils

We recall some definitions used for dealing with matrix pencils. Given P,Q ∈ C
n×n, if

there exists a full rank matrix V ∈ C
n×s and a matrix Λ ∈ C

s×s such that QV = PV Λ,
we say that the columns of V span an (s-dimensional) deflating subspace for the pencil
Pz − Q. The invariant subspaces of a matrix Q turn out to be deflating subspaces for
the pencil Iz −Q. If ϕ(z) = det(Pz −Q) is not identically zero, we say that Pz −Q is
a regular pencil. The (generalized) eigenvalues of the regular pencil Pz −Q are defined
as the roots of ϕ(z), complemented with n− k eigenvalues at infinity if ϕ(z) has degree
k lower than n.

4.2 Cayley transform

The Cayley transform of parameter 0 6= γ ∈ R is the map

Cγ : z 7→ z − γ

z + γ
.

Notice that, for γ > 0, Cγ maps the open (closed) right half-plane onto the open (closed)
unit circle, and the open (closed) left half-plane onto the exterior of the open (closed)
unit circle.

One can extend the map Cγ to matrices in a trivial way: if γ 6∈ σ(H), then

Cγ(H) := (H − γI)(H + γI)−1.

If γ ∈ σ(H), one can define Cγ(H) only as a pencil (H + γI)z − (H − γI).
The matrix Cγ(H) has the same right invariant subspaces as H, while the associated

eigenvalues are transformed according to µi = Cγ(λi), while λ1, . . . , λn+m are the eigen-
values of H, thus σ(Cγ(H)) = {µ1, µ2, . . . , µn+m}. In particular, µ1, . . . , µn lie inside the
(closed) unit disc, and µn+1, . . . , µn+m lie outside. A single or double eigenvalue at 0,
if present, is mapped to a single or double one at 1 (the precise statement about the
Jordan canonical form of the function of a matrix can be found in [21, Theorem 9.4.7]).

Similarly, the matrix pencil (H − γI) − z(H + γI), has generalized eigenvalues µi =
Cγ(λi) for λi 6= γ together with eigenvalues at infinity up to the multiplicity of γ as
eigenvalue of H and the same right deflating subspaces as H. Moreover, if 0 is a double
eigenvalue of H corresponding to a Jordan chain of length 2, then 1 is a double eigenvalue
of (H− γI)− z(H + γI) corresponding to a Jordan chain of length 2 (for the definition
of Jordan chain for a matrix polynomial see [9]).

Therefore, the four cases appearing in the beginning of Section 2 are mapped by the
Cayley transform to the following possibilities for Cγ(H) and (H − γI) − z(H + γI).
Notice that, in general, the µi are not ordered by increasing modulus.

nonsingular case |µi| < 1 for all i 6 n and |µj| > 1 for all j > n+ 1;

transient case |µi| < 1 for all i 6 n, µn+1 = 1 and |µj | > 1 for all j > n+ 2;

positive recurrent case |µi| < 1 for all i 6 n− 1, µn = 1 and |µj| > 1 for all j > n+ 1;
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null recurrent case |µi| < 1 for all i 6 n − 1, µn = µn+1 = 1 and |µj| > 1 for all
j > n + 2, and µn and µn+1 are the eigenvalues corresponding to a Jordan chain
of length 2 for the eigenvalue 1.

We say that matrices A ∈ R
(m+n)×(m+n) (or pencils Ez−A, with E ,A ∈ R

(m+n)×(m+n))
have a (n,m) d-splitting if their eigenvalues satisfy one of the previous four set of in-
equalities. The semi-unstable and semi-stable subspaces of H are mapped to the (well-
defined) n-dimensional invariant/deflating subspace associated with {µ1, µ2, . . . , µn} and
them-dimensional invariant/deflating subspace associated with {µn+1, µn+2, . . . , µn+m},
respectively. which we call the d-semi-stable and d-semi-unstable subspaces.

Notice the slight confusion deriving from the fact that the unstable subspace becomes
the d-stable one and vice versa; however, this is necessary if we wish to be consistent with
the classical terminology regarding discrete- and continuous-time stability in dynamical
systems.

4.3 Outline of SDA

The structured doubling algorithm, in the formulation of [17], is a system of rational
matrix iterations defined by

Ek+1 =Ek(I −GkHk)
−1Ek,

Fk+1 =Fk(I −HkGk)
−1Fk,

Gk+1 =Gk + Ek(I −GkHk)
−1GkFk,

Fk+1 =Hk + Fk(I −HkGk)
−1HkEk,

(8)

with suitable initial values E0 ∈ C
n×n, F0 ∈ C

m×m, G0 ∈ C
n×m, H0 ∈ Cm×n.

Let L,M ∈ C
(m+n)×(m+n) have the structure

L =

[
In −G0

0 F0

]
, M =

[
E0 0
−H0 Im

]
, (9)

and be such that the pencil Lz−M has a (n,m) d-splitting in the sense of the previous
section.

The SDA can be seen as an algorithm to compute a special basis for two special
deflating subspaces of Lz −M . Namely, if we define G∞ = limGk and H∞ = limHk,
then

[
I

H∞

]
,

[
G∞

I

]
(10)

span the right d-semi-stable and d-semi-unstable right deflating subspace of the pencil
Lz −M [17]. Observe that it may happen that such kind of bases do not exist, or that
some of the matrices to be inverted in (8) are singular, in that case we say that the SDA
cannot be applied. In the noncritical case, the two corresponding left deflating subspaces
are respectively

[
I −G∞

]
and

[
−H∞ I

]
.
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In the case of the M-NARE, the initial values of the SDA can be chosen as

E0 =I − 2γV −1
γ , F0 =I − 2γW−1

γ ,

G0 =2γD−1
γ CW−1

γ , H0 =2γW−1
γ BD−1

γ ,

Aγ =A+ γI, Dγ =D + γI,

Wγ =Aγ −BD−1
γ C, Vγ =Dγ − CA−1

γ B,

(11)

for a suitable γ > 0. One can verify that the initial values (11) form a pencil Lz −M
whose generalized eigenvalues and right deflating subspaces are precisely the eigenvalues
and right invariant subspaces of (H + γI)z− (H− γI); thus, by comparing (10) and (6),
one sees that G∞ and H∞ are the minimal solutions of (1) and (5) respectively.

The following result ensures the applicability of the SDA in our setting.

Theorem 4 ([14]). In an M-NARE, the SDA can be applied without breakdown (i.e.,
the quantities (I−GkHk)

−1 and (I −HkGk)
−1 exist at each step), and converges mono-

tonically to the minimal solution (i.e., it holds that 0 6 Hk 6 Hk+1 6 X∗ and Hk → X∗

), provided

γ > γ∗ = max

{
max
16i6m

aii, max
16i6n

dii

}
. (12)

Regarding the convergence rate, we have the following result. Notice that all its
hypotheses are satisfied in the case of M-NAREs.

Theorem 5 ([14, 7]). Suppose that we are in one of the four cases in Section 2, the
solutions X∗ and Y∗ exist, the SDA converges and γ > γ∗ where γ∗ is defined in (12). The
convergence of the SDA is linear with rate 1/2 in the null recurrent case, and quadratic
with rate

ν =
maxi=1,...,n |Cγ(λi)|

minj=1,...,m |Cγ(λn+j)|
(13)

in the other three cases, where λi are the eigenvalues of H different from γ. Moreover,
the value of γ > γ∗ that yields faster convergence is γ = γ∗.

4.4 Central eigenvalues and SDA convergence speed

In order to provide a stricter relation between the two central eigenvalues and the conver-
gence speed, we prove that the minimum and maximum appearing in (13) are attained
by the central eigenvalues, if γ is chosen as in (12).

Theorem 6. Consider the SDA algorithm for an M-NARE, and let γ be chosen ac-
cording to (12). The minimum and the maximum in (13) are attained by i = n and
j = 1, i.e., the two eigenvalues responsible for the convergence rate of SDA are the
central eigenvalues.

We establish the result with a geometrical reasoning. Let us first assess the following
lemma.
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Lemma 7. Let Γ be a closed disc in the complex plane with center C ∈ R and radius r.
The point in Γ with maximal modulus is one among C + r and C − r.

Proof. (of Lemma 7) Let C + p ∈ C, |p| 6 r, be a generic point in the disc. By the
triangle inequality, |C + p| 6 |C|+ |p| 6 |C|+ r, with equality if and only if |p| = r and
p has the same argument as C, i.e., either real positive or negative.

Proof. (of Theorem 4.4) From (12) we have γI−D > 0 and thus P = γI−D+CX∗ > 0.
Hence we may writeD−CX∗ = γI−P ; from the Perron–Frobenius theory of M-matrices,
it follows that all the eigenvalues of D−CX∗ are contained in the closed disc with center
γ and radius r = γ − λn; and in particular, the eigenvalue λn lies on its boundary. We
call this disc Γ, and proceed to prove that Cγ(λn) has the maximal modulus among all
points in in Cγ(Γ). The image of Γ under the Cayley transform is a closed disc Γ′, which
must be contained in the unit disc and symmetric with respect to the real axis. This
means that its center (which is not in general Cγ(γ)) is real. This disc Γ′ intersects the
real axis in the two points Cγ(λn) and Cγ(2γ−λn). By the lemma, the point of maximal
modulus in Γ′ is one among them; direct computation (using λn 6 γ) shows that it is
the former.

A similar reasoning starting fromA−X∗C yields that minj=1,...,m |Cγ(λn+j)| is achieved
by j = 1; we need some extra care with the signs, as λn+1 6 0, and with the fact that
this time the image of the enclosing disc under the Cayley transform is the outside of a
suitable disc.

This means that we may replace (13) with

ν =
|Cγ(λn)|
|Cγ(λn+1)|

.

By continuity, this ratio tends to 1 whenever λn+1−λn → 0, for a fixed γ ; thus, a small
gap implies a slow convergence rate for SDA.

5 The shift technique for the M-NARE

The shift technique has been applied in [14] to the M-NARE (1) whereM is a singular
irreducible M-matrix, that is, when at least one between λn and λn+1 is 0.

Without loss of generality one can assume that λn = 0: the case λn > 0 = λn+1 can
be reduced to the case λn = 0 by a simple trick. In fact [14, Lemma 5.1] the matrix
X is the minimal nonnegative solution of (1) if and only if Z = XT is the minimal
nonnegative solution of the equation

ZCTZ − ZAT −DTZ +BT = 0; (14)

where (1) has positive drift (transient case) if and only if (14) has negative drift (positive
recurrent case).

The shift technique is rooted in the following results.
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Lemma 8 (Brauer’s theorem [6]). Let (λ, v) be an eigenpair for the matrix T . Let u be
a vector with uT v = 1 and s be a scalar. The eigenvalues of the matrix T̂ := T + svuT

are the same as those of T , except λ which is replaced by λ+ s.

Theorem 9 ([14]). Let H be the as in (2) associated with the M-NARE (1) with λn = 0,
and let vn be the eigenvector relative to λn; consider the matrix

Ĥ := H + svnu
T ,

with uT vn = 1 and s > 0. Then, the minimal solution X̂∗ of the NARE associated with
Ĥ coincides with the minimal solution X∗ of the M-NARE associated with H.

The shift technique consists in computing the eigenvector vn corresponding to the
eigenvalue λn = 0, and using it to construct the modified NARE as in Theorem 9. The
matrix Ĥ has eigenvalues λ1, λ2, . . . , λn−1, λ̂n where λ̂n = s (the eigenvalue λn has been
“shifted” from 0 to s, this justifies the name of the technique). Observe that the gap
of Ĥ is larger than that of H; thus, better conditioning and faster convergence of SDA
are expected, for a fixed Cayley parameter γ. Numerical experiments [14] show that
this technique reduces dramatically the number of steps of the SDA in the critical and
close-to-critical case. In the critical case, the convergence from linear becomes quadratic.

However, it can happen that the Riccati equation associated with Ĥ is not an M-
NARE; that is, M̂ = J Ĥ need not be an M-matrix. Hence, there is no guarantee that
the SDA can be performed without a breakdown, even if in practice this method works
well and the applicability of SDA is usually assumed [14].

Notice that, since λn = 0, the vector vn can be computed as kerM. In principle,
the shift technique could be used also for nonsingular M-matrices, i.e., the hypothesis
λn = 0 is not actually needed in Theorem 9. Different techniques are needed for the
computation of λn and vn in this case; for instance, the power method.

However, in the close-to-critical case the eigenvector vn is ill-conditioned and therefore
it cannot be computed with good accuracy. When in additionM is singular irreducible,
it is not easy to discriminate between λn > 0 and λn = 0, or to identify the critical cases.

To overcome this problem, we present a shift technique which moves together λn

and λn+1, without computing explicitly the eigenvectors corresponding to them, but
working with the whole 2-dimensional invariant subspace associated with λn and λn+1,
which typically shows better conditioning. We call this subspace central subspace of H.

6 The subspace shift technique

We describe a modification of the shift technique that is especially tailored for the case
in which the gap of the M-NARE is small, i.e., H has two eigenvalues λn and λn+1 very
close (or equal) to 0.

The idea of the subspace shift technique is the following. First, we perform a suitable
rank-two modification on the matrix H obtaining a new matrix Ĥ with the same splitting
as H but with a larger gap between the central eigenvalues. This rank-two modification
of H is built using the left and right invariant subspaces corresponding to the central
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eigenvalues. Then, using the blocks of Ĥ, we derive a new Riccati equation, which we
call R̂(X) = 0. A numerical method (we used the SDA in our examples, but any other
algorithm is fine) is then used to compute the solution X̂∗ of R̂(X) = 0 associated with
the invariant subspace of the eigenvalues contained in the right half-plane. Finally, the
required solution X∗ of the original NARE is obtained from X̂∗ by adding a rank-1
correction.

6.1 Invariant subspaces of Ĥ
Let V (resp. U) be the invariant subspace generated by the right (resp. left) eigenvectors
vn and vn+1 (resp. un and un+1) relative to the eigenvalues λn and λn+1. Let V ∈
R
(m+n)×2 (resp. U ∈ R

(m+n)×2) be an orthonormal basis of V (resp. U); then there
exists Λ ∈ R

2×2 such that HV = V Λ, and premultiplying both sides by V T we get
Λ = V THV .

Let now
Ĥ := H + V SUT , (15)

for a matrix S ∈ R
2×2.

Theorem 10. Let H be as in (2) associated with the M-NARE (1), and let Ĥ be defined
according to (15). The eigenvalues, eigenvectors, and invariant subspaces of Ĥ (corre-
sponding to noncentral eigenvalues) are the same as those of H, the central subspace of
H, that is the invariant subspace HV = V Λ corresponding to the central eigenvalues
λn, λn+1 is replaced by

ĤV =V Λ̂, Λ̂ =Λ + SUTV.

If Λ+SUTV is nondefective, with two eigenpairs (λ̂i, xi), i = n, n+1, then (λ̂i, V xi) are
two eigenpairs of Ĥ. If it is defective, with a Jordan chain yn, yn+1, then V yn, V yn+1 is
a Jordan pair for H with the same generalized eigenvalue.

Proof. Suppose HW = WM , and λn, λn+1 6∈ σ(M). Then, UTW = 0: as λn and
λn+1 are separated from the other eigenvalues in H of a M-NARE, UT and W span
respectively the left and right invariant subspace relative to different eigenvalues, and
thus are orthogonal. This implies that ĤW = HW = WM , that is, W spans an invariant
subspace with the same eigenvalues for Ĥ as well.

On the other hand, for the central subspace V we have

ĤV = (H + V SUT )V = V (Λ + SUTV ).

Multiplying the latter equation by xi or yi yields the last statement of the theorem.

We aim to find a choice of S so that the matrix Λ̂ has one positive and one negative
eigenvalue, so that the matrix Ĥ has an eigenvalue splitting with respect to the imaginary
axis and we fall in one of the four cases of eigenvalue splitting.

We suggest two strategies for enforcing this.

12



1. Choosing S so that det(Λ̂) < 0. In this case, the two roots of the characteristic
polynomial are guaranteed to be real and with different signs. Since UTV is nonsin-
gular (left and right eigenvector matrices corresponding to separated eigenvalues),
we may choose S to obtain any matrix in place of Λ̂.

2. In particular, choosing S = sΛ(UTV )−1 for a scalar s > 0, we obtain Λ̂ = (s+1)Λ.
As we see in the following, this is a special situation since the eigenvectors of Λ and
Λ̂ coincide, and thus the remainder of the solution algorithm is greatly simplified.

6.2 Solution form

Once Ĥ is constructed, one can define a new algebraic Riccati equation R̂(X) = 0
associated with Ĥ; as in the case of the simple shift, R̂(X) = 0 need not be an M-
NARE, and thus convergence is not guaranteed.

Theorem 11. Let v be the left eigenvector of H corresponding to an eigenvector λ with
ℜλ > 0, and let v̂ and û be a left and right eigenvector of Ĥ relative to λ̂ with ℜλ̂ > 0.
Suppose that the Riccati equation associated with Ĥ has semi-unstable solution X̂∗. Let

wT :=ûTn

[
I

X̂∗

]
, ∆v := v − v̂ =

[
∆v1
∆v2

]
with ∆v1 ∈ R

n, r :=1 +wT∆v1.

The Riccati equation associated with H has a semi-unstable solution X∗ if and only if
r 6= 0, and in this case it is given by

X∗ =X̂∗ +
1

r
zwT , z =

[
−X̂∗ I

]
∆v.

Proof. Let v1, . . . vn−1, v̂ be a set of Jordan chains spanning the semi-unstable space of
Ĥ. Then, [

I

X̂∗

]
=

[
v1 . . . vn−1 v̂

]
Z

for a suitable nonsingular Z ∈ R
n×n. Since ûT is the left eigenvector corresponding to λ̂,

we have (up to a normalization factor which has no effect on the final formula) ûT v̂ = 1
and ûT vi = 0 for i = 1, . . . , n− 1. Hence, left-multiplying by ûT yields eTnZ = wT . The
semi-unstable space of H is spanned by {v1, . . . , vn−1, v}, thus a basis for it is given by

[
v1 . . . vn−1 v

]
Z =

([
v1 . . . vn−1 v̂

]
+ (v − v̂)eTn

)
Z =

[
I

X̂∗

]
+∆vwT .

By Theorem 1, the semi-unstable solution X∗ exists if and only if the leading n × n
block, i.e. I + ∆v1w

T , is nonsingular. By the Sherman–Morrison formula, said matrix
is nonsingular if and only if r = 0, and in this case

(I +∆v1w
T )−1 = I − 1

r
∆v1w

T . (16)

By the same theorem, the solution X∗ has the form

X∗ = (X̂∗ +∆v2w
T )(I +∆v1w

T )−1;

now simple algebraic manipulations and (16) lead to the desired expression.
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7 The subspace shift algorithm

7.1 The basic algorithm

Using the formula of Theorem 11, we propose Algorithm 1 for computing the minimal
solution of an M-NARE.

Algorithm 1 Subspace-shift algorithm for the solution of an M-NARE

1: Compute orthonormal bases U, V for the invariant subspaces corresponding to
λn, λn+1

2: choose any S such that Λ̂ = Λ + SUTV has negative determinant
3: compute Ĥ = H + V SUT

4: solve the NARE R̂(X) = 0 associated with Ĥ.
5: compute the semi-stable eigenvectors x and x̂ for the 2 × 2 matrices Λ, Λ̂, and

set v = V x, v̂ = V x̂; similarly, compute the semi-stable left eigenvector yT of
M = UT ĤU and set uT = yTUT

6: Recover the solution to the original NAREX∗ from the solution X̂∗ using Theorem 11

It is possible to compute the solution to the dual equation with a similar formula, by
making use of the unstable eigenvalues vu, v̂u and ûTu .

7.2 The case ∆v = 0

As suggested in Section 6, the choice S = sΛ(UTV )−1 leads to a simpler development
of the algorithm. Since Λ and Λ̂ have the same eigenvectors, v = v̂, and thus the rank-1
modifications to X̂∗ in Theorem 11 vanish, i.e., X∗ = X̂∗. The new algorithm is exposed
here as Algorithm 2. Notice that Algorithm 2, however, does not change the situation

Algorithm 2 Subspace shift algorithm for the solution of an M-NARE, in the case
∆v = 0
1: Compute orthonormal bases U, V for the invariant subspaces corresponding to

λn, λn+1

2: Compute Ĥ = H + sV V THV (UTV )−1UT

3: Solve the NARE R̂(X) = 0 associated with Ĥ, getting directly the solution of the
original M-NARE

when the problem is exactly critical, since the two critical eigenvalues λn = λn+1 = 0 do
not change when multiplied by a constant. In this case, which is easy to identify given
U and V , we may revert to the shift technique.

7.3 Central subspaces or smallest eigenvalues?

The algorithm above can be applied to any M-NARE without additional assumptions.
However, two main issues arise.
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• It is not clear how to compute the central invariant subspace. A natural candi-
date in the test problems is the inverse orthogonal iteration [10, Section 7.3.2],
a linearly-convergent iteration which computes the invariant subspace relative to
the eigenvalues with smallest modulus of a given matrix. However, λn and λn+1

need not be the two smallest eigenvalues. In principle, we could have settings such
as λn and λn−1 very close to each other and to zero, and λn+1 slightly larger in
modulus.

• Even if we shift away the two central eigenvalues, the remaining ones (e.g., λn−1

in a setting similar to the case above) could be very close to them, and thus the
conditioning and SDA convergence speed are almost unchanged; therefore, the
subspace shift can still be applied but is not much useful.

Therefore, it is useful to restrict our interest to the cases in which the method works
best. Namely, we set

ε =max(|λn| , |λn+1|), δ = min
j 6∈{n,n+1}

|λj | ,

and focus on the cases in which ε 6= 0 and δ is larger than ε by a significant amount.
Notice that, in this case, inverse orthogonal iteration converges to the correct subspace
linearly with rate ε/δ, and the distance between the two central eigenvalues of H̃ is
increased to at least 2δ. Notice that we can easily detect during the algorithm when
these assumptions are not satisfied. An algorithm to perform all the relevant checks is
reported here as Algorithm 3. In many applications [19, 1], our assumptions hold and

Algorithm 3 Subspace shift algorithm for the solution of an M-NARE, with a general
subspace

1: Compute orthonormal bases U, V for the invariant subspaces corresponding to the
two eigenvalues of H with smallest modulus, e.g., with inverse orthogonal iteration

2: If the orthogonal iteration converges too slowly (or does not converge), then there
are eigenvalues close to the central ones: report failure

3: If det(V THV ) > 0, then the two smallest eigenvalues are not the central ones: report
failure

4: Continue as in Algorithm 1 or 2

subspace shift can be applied with computational advantage, as we see in the numerical
experiments. Notice that Algorithm 2 apparently works even when det(V THV ) > 0: in
this case, we are simply shifting away (by multiplying them by s + 1) two eigenvalues
belonging to the same subspace, the d-semi-stable or the d-semi-unstable one. However,
when this happens on a close-to-critical problem, then the subspace computed by the
method is ill-conditioned (since there are at least three eigenvalues close to zero, and we
are shifting away only two of them), and we do not expect the method to yield good
results. Moreover, in this case the non-central eigenvalue that we are shifting is not
guaranteed to be simple.
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7.4 SDA for computing the central invariant subspace

As an alternative to the inverse orthogonal iteration, we may use another run of SDA
to compute the central invariant subspace. SDA costs O(n3) per step, and converges
quadratically, whereas the inverse orthogonal iteration costs O(n2) per step and con-
verges linearly. We call this first application of the algorithm the inner SDA. Since in our
setting λn and λn+1 are the smallest eigenvalues ofH, there a diskDr = {z ∈ C : |z| 6 r}
such that such that λn, λn+1 lie in Dr and the other eigenvalues lie outside Dr. We scale
H by r and re-block the resulting matrix as

Hr = rH =

[
Dr −Cr

Br −Ar

]
,

so that Dr ∈ C
2×2 and Ar ∈ C

(m+n−2)×(m+n−2). Notice that the d-semi-stable space of
Hr is the one associated to λn and λn+1, due to our choice of r. Therefore, when there
is no breakdown in SDA, the sequences given by (8), with

E0 = Dr − CrA
−1
r Br, F0 = −A−1

r , G0 = CrA
−1
r , H0 = A−1

r Br,

are such that limk Hk = Xr, limk Gk = Yr, where

[
I
Xr

]
and

[
I −Yr

]
span the right and

left central invariant subspaces of H, respectively. After computing them, it suffices to
get orthogonal bases of these two subspaces via a QR factorization to get U and V as
required in the algorithm.

At first sight, it seems that applying this algorithm requires knowing the value of r
in advance. In fact, one sees that the multiplicative constant r factors nicely out of the
SDA iteration, and only affects the magnitude of Ek and Fk. Namely, the initial values
for a generic r are related to those for r = 1, which we denote by a (1) superscript, by

Ek =r2
k

E
(1)
k , Fk =r−2kF

(1)
k , Gk =G

(1)
k , Hk =H

(1)
k .

Therefore, we may compute the SDA iteration for r = 1, or generically for any value
of r, since the values Gk and Hk do not depend on its choice. To avoid overflow and
underflow, it may be useful to renormalize the iterates every few steps, setting

αk ←
ρ(Fk)

1/2

ρ(Ek)1/2
, Ek ←αkEk, Fk ←α−1

k Fk. (17)

7.5 Magnitude of the shift

Another issue which appears in the practical implementation is the selection of s in
Algorithm 2. If the chosen value is too small, then the two central eigenvalues do not
move significantly and the gap remains small; on the other hand, if the shift is excessively

large then
∥∥∥H̃

∥∥∥
F

grows, and the conditioning of the shifted Riccati equation degrades,

according to (7).
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Intuitively, larger values of s improve the conditioning as long as the shifted eigenvalues
(1 + s)λn and (1 + s)λn+1 are central eigenvalues for H̃, too. As soon as they become
larger (in modulus) than λn−1 and λn+2, then they are no longer central, and thus
increasing them further does not affect directly our conditioning bounds. Therefore, we
need to estimate how small they are with respect to the other eigenvalues. We may get
an estimate using the convergence speed of the inner inverse power iteration or inner
SDA. Notice that, with our assumptions on the eigenvalues, the convergence rate of both
algorithms is determined by

t =
ε

δ
=

max(λn, λn+1)

δ
;

hence a rough estimate for t is given by comparing two successive iterates of any of
the two inner iterations. The values of λn, λn+1 are easily computed, since they are
the eigenvalues of the 2 × 2 matrix V THV . We may solve for δ in the equation above,
obtaining the magnitude of the smallest eigenvalue besides the central ones. If we choose
s such that (1+s)min(λn, λn+1) > δ, then both (1+s)λn and (1+s)λn+1 become larger
(in modulus) than δ.

Similarly, for Algorithm 1, we may choose S to make Λ̂ any matrix, as pointed out
above. In particular, we may ensure that both its eigenvalues have larger modulus than
δ.

7.6 Randomization in the inner SDA

When the SDA is applied to a M-NARE, the existence of the two solutions X∗ and
Y∗ is guaranteed by probabilistic arguments [15]. On the other hand, an additional
issue that may arise with the inner SDA is that the d-semi-stable and d-semi-unstable
invariant subspaces need not have bases in the form (6). To ensure that this happens
with high probability, we conjugate Hr by a random orthogonal matrix before applying
the algorithm.

The complete inner SDA used in the implementation is reported as Algorithm 4.

7.7 Solution of the shifted equation

Applying the subspace shift to an M-NARE yields a shifted equation R̂(X) = 0 which
may not be an M-NARE. However, the corresponding matrix Ĥ has the same splitting
as H, and thus the SDA converges to the required solution (assuming the applicability).

So the SDA converges faster in the shifted case if the parameter γ of the Cayley
transform is the same as the one used in the customary SDA, namely γ∗ of (12). This
remark is necessary since the shifted NARE loose the structure of M-NARE and thus
Theorem 4 may not hold.

8 Numerical experiments

We present some numerical examples showing the effectiveness of the algorithms pre-
sented in Section 7 in solving close-to-null recurrent M-NARE, when the assumptions of
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Algorithm 4 “Inner SDA” for the computation of the central invariant subspaces

1: generate a random (n+m)× (n+m) orthogonal matrix Q
2: set H̄ = QHQ−1

3: partition H̄ =

[
D̄ −C̄
B̄ −Ā

]
, with D̄ ∈ R

2×2, Ā ∈ R
(m+n−2)×(m+n−2)

4: Compute the starting values E0 = D̄ − C̄Ā−1B̄, F0 = −Ā−1, G = C̄Ā−1, H0 =
Ā−1B̄.

5: while Gk and Hk have not converged yet do
6: perform a SDA step (8)
7: if breakdown happens in the SDA step, report failure
8: if needed, renormalize Ek and Fk using the procedure (17)
9: end while

10: return Q−1

[
I

H∞

]
and

[
I −G∞

]
Q

Section 7.3 are fulfilled; that is, when the two central eigenvalues are not both zero and
the other eigenvalues are well separated from them. We recall that these assumptions
can be identified dynamically by the algorithm.

We report the number of steps required by the customary application of the SDA
to the NARE and the number of steps of the inner and outer SDA in the subspace
shift algorithm. These steps are the most expensive part of the algorithms, since their
asymptotic cost is cubic with respect to the size of the matrices; for instance, for m = n,
the cost of a step of the SDA is O(n3) elementary arithmetic operations. The number of
steps of the inner SDA is put in parentheses since the same quantities computed by the
inner SDA can be also computed in principle by different, less expensive, algorithms.

We estimate the accuracy of the computed solution X̃∗ by means of the relative error

err =

∥∥∥X̃∗ −X∗

∥∥∥
F

‖X∗‖F
,

if the exact solution X∗ is available, elsewhere by means of the relative residual

res =

∥∥∥R(X̃∗)
∥∥∥
F∥∥∥X̃∗CX̃∗ +B

∥∥∥
F
+

∥∥∥AX̃∗ + X̃∗D
∥∥∥
F

.

In our experiments the Frobenius norm is used.

Test 1. As a first test, we consider the close-to-critical cases of the transport problem
treated in [15, 19, 5]. It is an M-NARE with square coefficients of size n and depending
on two parameters 0 6 α < 1 and 0 < c 6 1 (for the exact definition and the meaning
of the parameters see [19]). The problem is critical for (α, c) = (0, 1), and it is close-to-
critical if α and c approach simultaneously 0 and 1.

We measure the number of SDA iterations needed to get the best relative residual for
several matrix sizes n and choices of the parameters β such that α = β and c = 1 − β.

18



n β gap SDA its SDA res Alg 2 its Alg 2 res

32 10−3 −0.11 14 8.8 · 10−15 (5+)10 4.0 · 10−16

32 10−6 −3.5 · 10−3 19 1.0 · 10−14 (4+)10 1.1 · 10−16

32 10−12 −3.5 · 10−6 28 8.1 · 10−15 (3+)9 1.1 · 10−16

128 10−3 −0.11 16 1.2 · 10−13 (5+)12 7.9 · 10−15

128 10−8 −3.5 · 10−4 24 1.4 · 10−13 (4+)12 2.1 · 10−16

Table 1: Number of iterations for Algorithm 2 vs. SDA on the transport problem

As β approaches zero, the problem becomes close-to-critical; in fact β is strictly related
to the relative gap which can be defined as gap = |λn − λn+1|/‖H‖. The results are
reported in Table 8. As one can see the problem is well suited to be solved by our
algorithms since the central eigenvalues are well separated from the others.

Test 2. As a second example, we consider an M-NARE associated with a simple weakly
transient Markov chain. It is a slight modification of an example of [1].

We define the matrix

H =




3 0 −1.5 −1.5
0 3 −2.9 −0.1

2− p 1 −3 p
2− p 1 p −3


 ,

such that JH is a singular M-matrix for 0 6 p 6 2. The corresponding M-NARE has
the minimal nonnegative solution

X∗ =

[
(2− p)/3 1/3
(2− p)/3 1/3

]
.

Since the eigenvalues of H are {0, 3, p,−p − 3}, the problem is close-to-critical as p
approaches 0.

As before we measure the number of SDA iterations for several values of p together
with the relative error. The results are reported in Table 2. As one can see the number
of iteration required is dramatically reduced when p tends to 0. However, the accuracy of
the solution will not increase. This fact suggest the use of the customary shift technique
in singular cases.
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